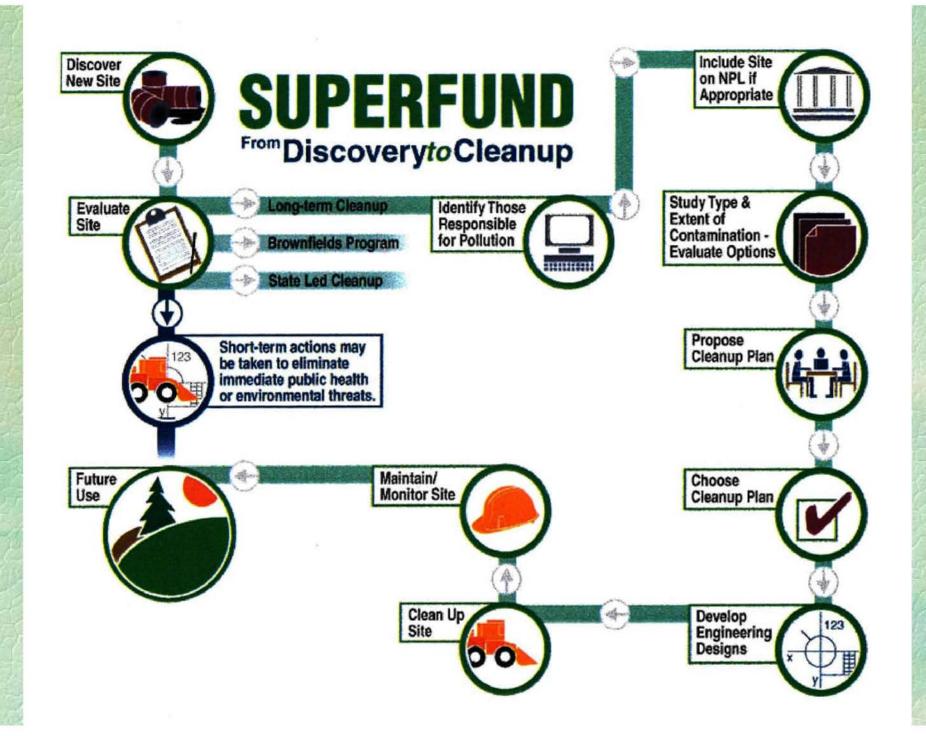

Public Information Meeting EPA's Proposed Cleanup Plan

Sutton Brook Disposal Area
Superfund Site
Tewksbury, MA
June 27, 2007


Agenda

- Welcome and Introductions
 - Don McElroy, USEPA
- Site Status & Background
 - Don McElroy, USEPA
- Superfund and Remedy Selection Process
 - Don McElroy, USEPA
- Remedial Investigation and Risk Assessment Overview
 - Jeff Hamel, Woodard & Curran
- Feasibility Study Overview
 - Jeff Hamel, Woodard & Curran
- EPA's Preferred Alternatives
 - Don McElroy, USEPA
- Questions & Answers

Background and Progress

- 2000 EPA removes 300 to 400 buried drums and associated contaminated soil, from next to landfill. Additional contaminated soil is stockpiled.
- 2001- Sutton Brook listed as a Superfund Site (NPL)
- 2001-2002 Potentially Responsible Parties (PRPs) remove contaminated soil pile.
- 2004 EPA reaches settlement with a group of 25 PRPs: PRPs agree to conduct Remedial Investigation/Feasibility Study.
- 2004-2007 Remedial Investigation/Feasibility Study conducted to determine extent of contamination and potential cleanup approaches

What are the Remedial Investigation and Risk Assessment?

- Identifies the type and extent of contamination on the site
- Identifies sensitive populations that may be affected by contamination on the site by preparation of
 - Public Health Risk Assessment
 - Baseline Ecological Risk Assessment

Feasibility Study - Introduction

- Identifies and evaluates potential remedial technologies
- Addresses areas of unacceptable risk identified in the Risk Assessments
- Identifies, screens, and compares remedial options
- Used by EPA to prepare the Proposed
 Cleanup Plan

Feasibility Study - Process

- Identifies relevant federal and state regulations ("ARARs")
- Determines site-specific cleanup goals
- Identifies potential remediation technologies
- Screens appropriate technologies
- Assembles applicable cleanup technologies or various combinations of cleanup technologies
- Conducts a detailed evaluation of cleanup technologies
 - Compares to EPA's nine criteria
 - Compares alternatives to one another

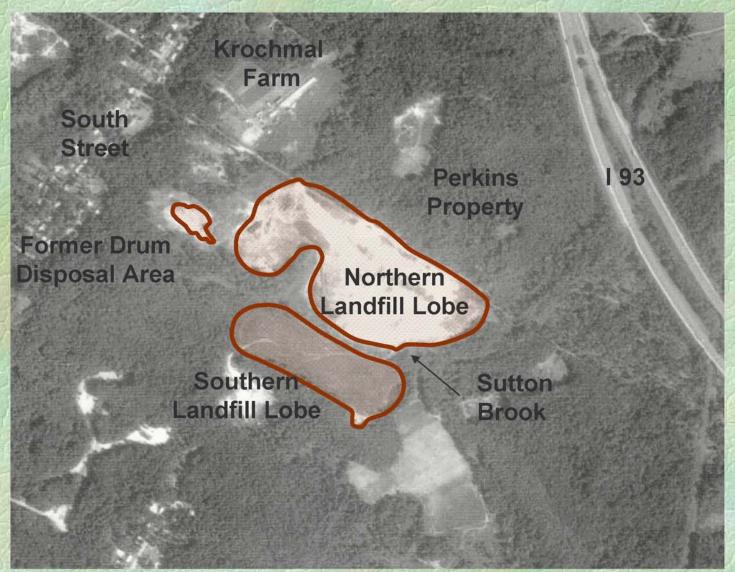
Nine Criteria for Remedy Selection

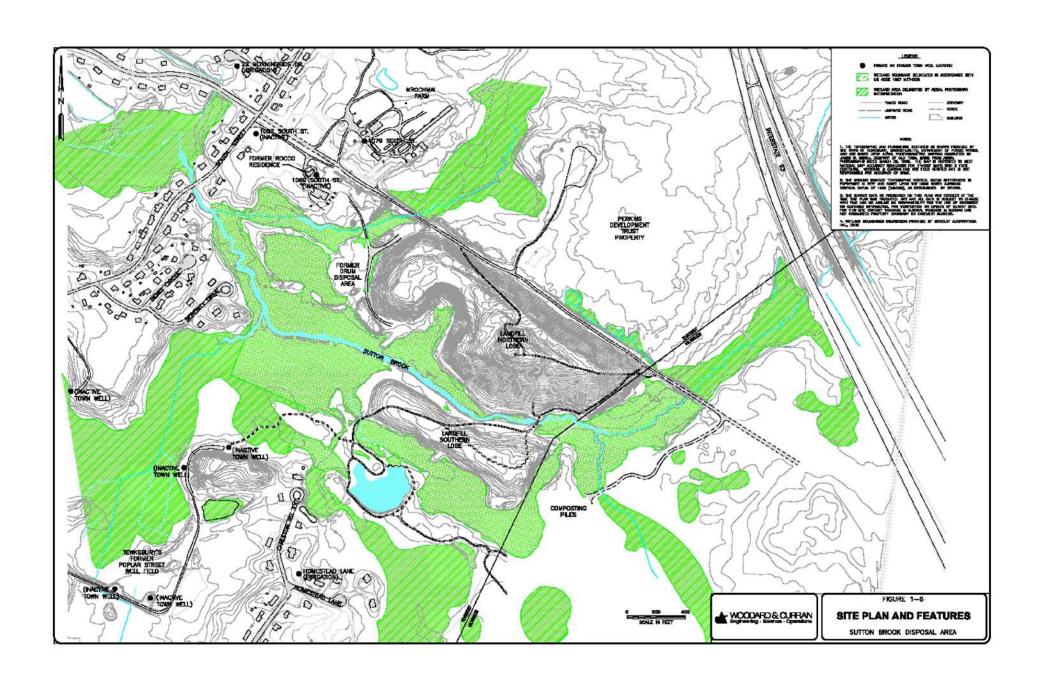
Threshold Criteria:

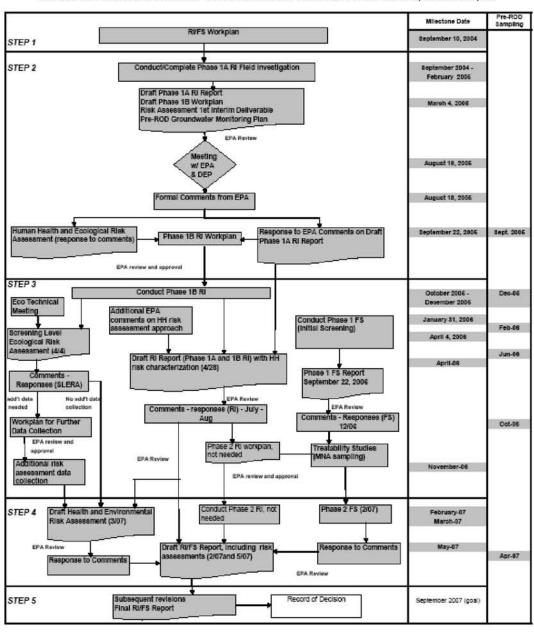
- Overall Protection of Human Health and the Environment ("Protectiveness")
- Compliance with ARARs
- Balancing Criteria:
 - Long-term Effectiveness and Permanence
 - Reduction in Toxicity, Mobility, and Volume
 - Short-term Effectiveness
 - Implementability
 - Cost

Nine Criteria For Remedy Selection

- Modifying Criteria:
 - State Acceptance
 - Community Acceptance
- These are evaluated based on the public comment period


Remedial Investigation Overview Feasibility Study Overview


Jeff Hamel

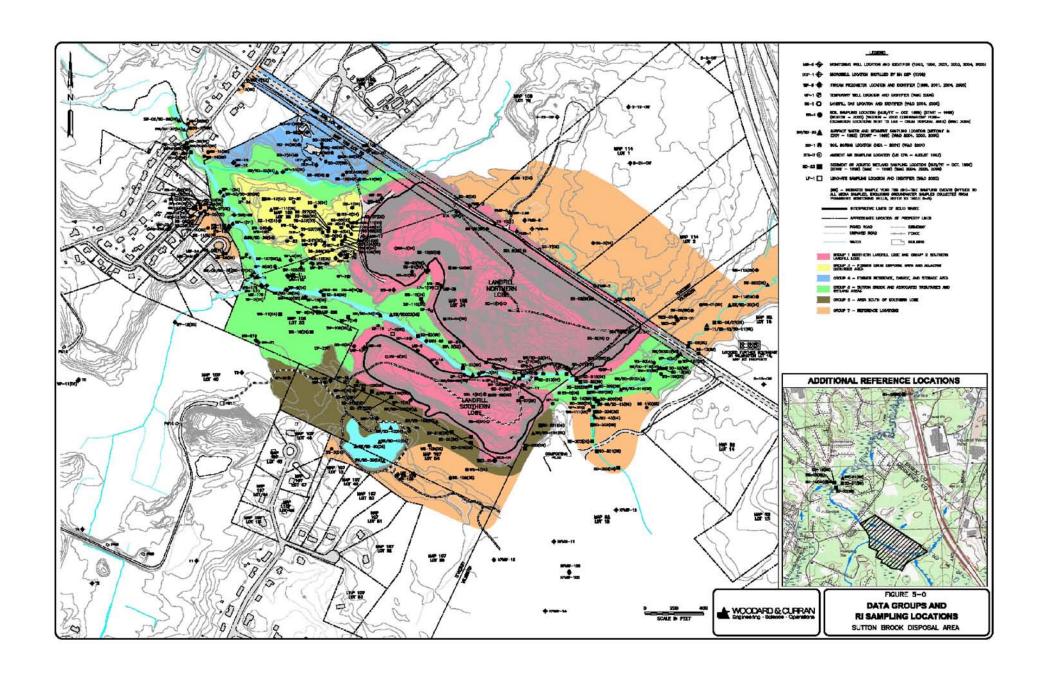

Outline

- Site Overview
- RI/FS Milestones/Process
- Remedial Investigation (RI)
- Human Health and Ecological Risk
 Assessment (HERA)
- Feasibility Study (FS)

Site Overview

RI Findings

RI Components


- Evaluate/Integrate Previous
 Investigation Data (1989 2002)
- Landfill Cover Presumption
- Soil and Source Investigation
 - 38 test pit excavations
 - 10 soil borings
 - 2 leachate samples
- Air Quality
 - 5 landfill gas

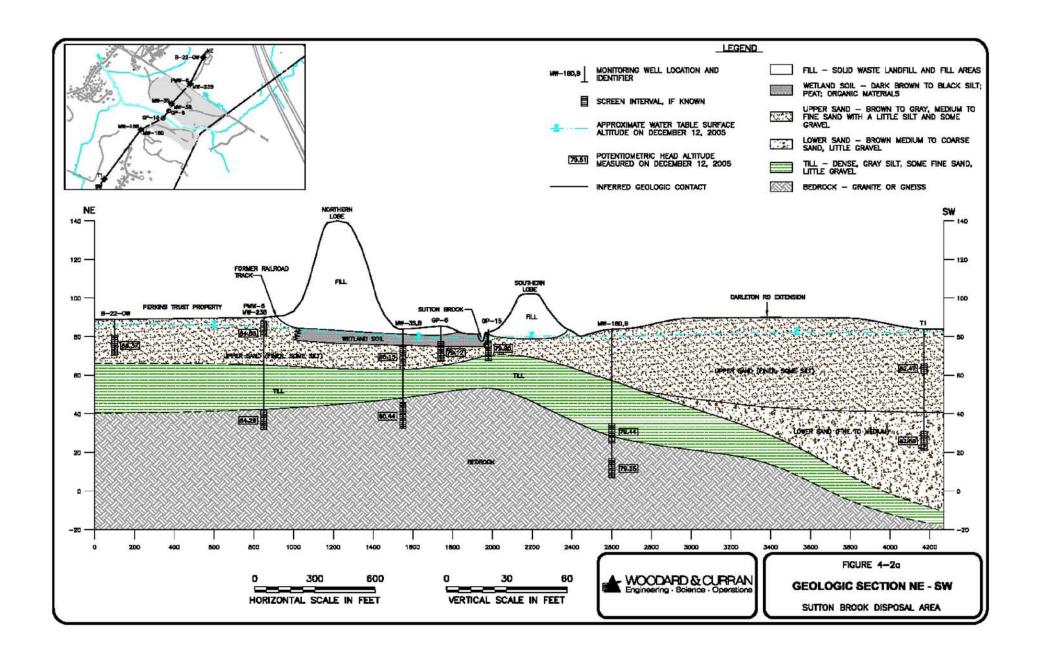
RI Components

- Groundwater Investigation
 - 25 temporary wells
 - 13 well points
 - 5 monitoring wells
 - 4 monitoring wells in residential neighborhood
- Hydrogeology
 - Water levels from 117 points seven events (2004 2006)
 - 11 in situ hydraulic conductivity tests
 - Groundwater numerical flow model

RI Components

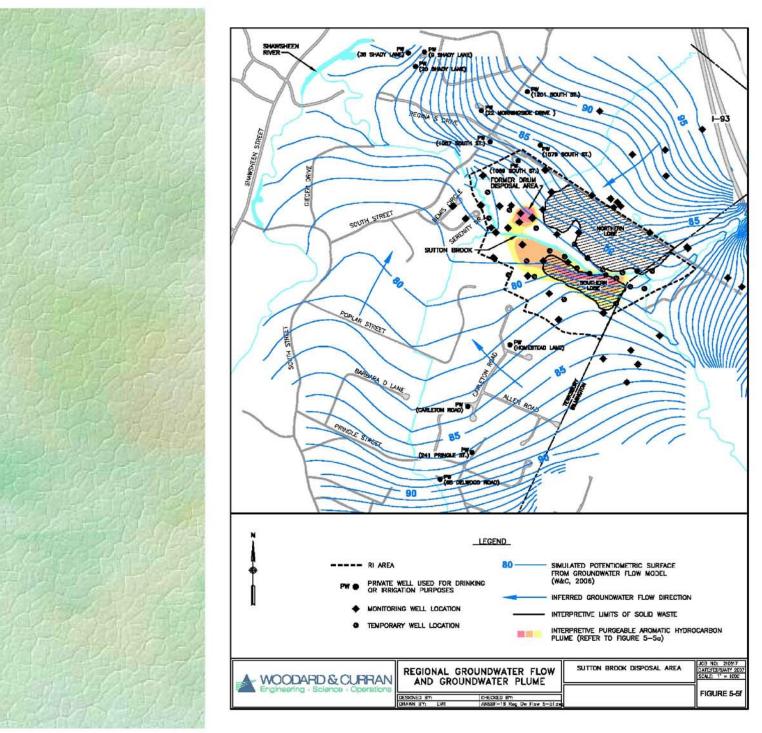
- Sutton Brook and Associated Wetlands
 - 28 surface water samples
 - 36 sediment samples
 - Stream gauging 8 locations seven events (2004 2006)
- Wetland and Upland Soils
 - 36 samples
- Wetland delineation
- Habitat assessment

RI Data Set


- Soils
 - Upland Soils 72 Locations
 - Wetland Soils 22 Locations
- Groundwater
 - Permanent Monitoring Wells 58 Wells
 - Temporary Wells 34 Wells/Piezometers
 - Sampling Events 13 separate events (1995 2006)

RI Data Set

- Surface Water 56 Locations (1995 –
 2006)
- Sediment 76 Locations
- Leachate 2 Locations
- Landfill gas 8 Locations
- Ambient Air 7 Locations
 Soil, sediments, and water samples analyzed for VOCs, SVOCs, metals, and PCBs/Pest


Findings - Hydrogeology

- Ground Surface
 - Landfill or Wetlands
- Geology
 - Sand (10 to 45 ft thick) underlain by till
 (5 to 20 ft thick)
 - Bedrock 20 to 60 ft bgs
 - Bedrock Valley on Western Portion of Site

Findings - Hydrogeology

- Groundwater
 - Depth At or Near Surface to 12 ft bgs
 - Brook Controls Groundwater Flow Direction
 - Flatter Gradients in Deeper Groundwater
 - 1 to 2 orders of magnitude slower seepage velocities in deeper groundwater
 - Upward Component of Flow Near Brook/Wetlands

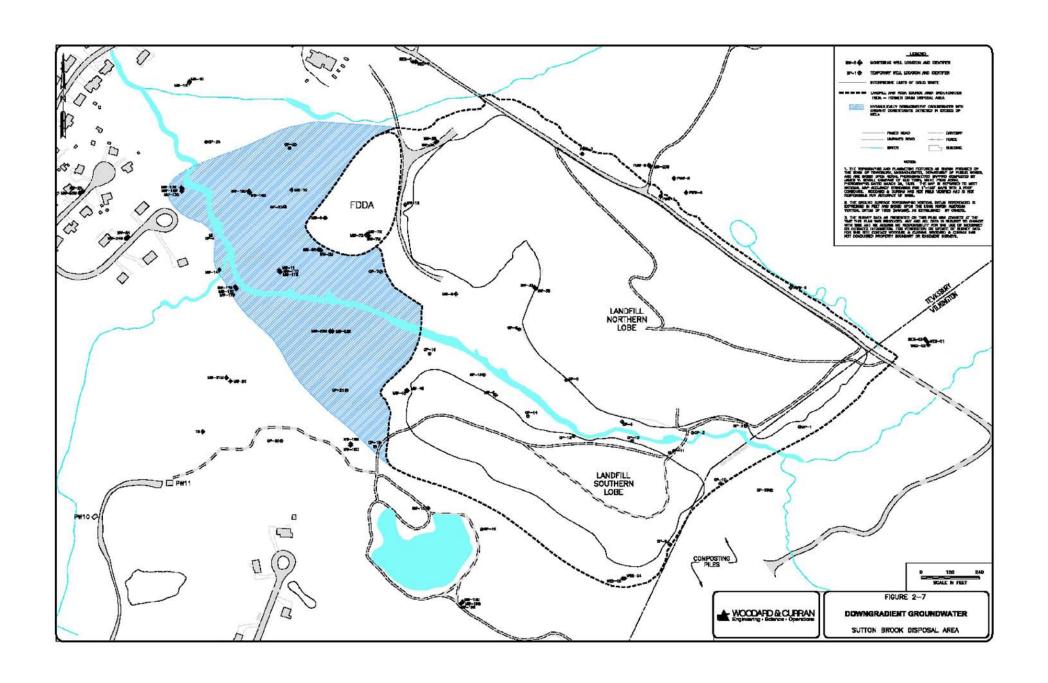
Findings - Landfill Lobes

- Northern Lobe 30 acres (1.9 million cy)
- Southern Lobe 10 acres (0.3 million cy)
- Landfill Gases 14-70% Methane; 15-34% CO₂; and 0.7-540 ppm total VOCs
- Southern Lobe Groundwater
 - Primarily VOCs (Toluene and Ketones) and Metals
 - 3.5 to 57 mg/l Total VOCs
- Northern Lobe Groundwater
 - Lower Concentrations than Southern Lobe
 - 0.05 to 0.84 mg/l total VOCs (1,4 dioxane and THF)
- VOCs and Metals Detected in Surface Water and Sediment in Between Two Landfill Lobes

Findings - Former Drum Disposal Area

- Drums and Soil Removed in 2000
- Residual Levels of VOCs and SVOCs in Soils
 - TEX, TCA, PCE, and Phthalates
 - Highest Concentrations 4-6 ft bgs; Decrease w/
 Depth

Groundwater


- TEX, TCA, TCE, Ketones in overburden
- Bedrock Non-Detect for VOCs
- Limited Plume Extent due to natural attenuation mechanisms

Findings-Former Garage & Storage Area

- Petroleum Hydrocarbons and Metals in Shallow Soils
- Groundwater not Significantly Impacted

Findings – Non-Source Areas

- Lower Concentrations of VOCs and Metals
 Detected in Wetland Soils and Sediments in
 Sutton Brook (non-site channel) and Tributaries
- Downgradient Groundwater Plumes from FDDA and Southern Lobe Source Areas exceed MCLs – contained on-site

Summary of Overall RI Findings

- Source Areas Landfill Lobes, FDDA,
 GSA
- Localized Impacts to Sutton Brook and Associated Wetlands
- Concentrations of Constituents in Site-Wide Groundwater in Excess of MCLs
- Natural Attenuation Mechanisms
 Contributing to Plume Containment
 - Groundwater Plume does not Extend to Western Neighborhood or Downgradient Bedrock

Human Health and Ecological Risk Assessment

Human Health (HHRA) Components

- Hazard Identification
- Exposure Assessment
 - Receptors Trespasser/recreator; hypothetical future resident, construction worker and facility worker
 - Exposure pathways
- Dose Response
- Risk Characterization
 - Risk estimates compared to EPA risk limits

Baseline Ecological (BERA) Components

- Habitats evaluated
 - Upper Sutton Brook
 - Aquatic Wetlands
 - Pond
 - Wetland Soils
 - Uplands
- Receptors aquatic, semi-aquatic, waterfowl, and terrestrial wildlife
- SLERA maximums compared to benchmarks
- Site-specific refinements in BERA

Findings – HHRA

- Landfill Lobes presumed risk
- Groundwater exposures exhibited greatest potential risk
 - Hypothetical future potable use and vapor intrusion into a future on-site building
- Shallow soils (due to PAHs) in the GSA and arsenic in sediments were above risk limits

Findings – BERA

- Ecological Risk identified:
 - Upper Sutton Brook
 - Surface water (eastern reach and site channel)
 - Sediment (Site channel)
 - Aquatic Wetland
 - Surface water
 - FDDA
 - Soils
 - GSA
 - Soils

Feasibility Study

Feasibility Study

- Phase 1 Initial Screening
 - Screen Technologies
 (Effectiveness, Implementability, and Relative Cost)
 - Combine Retained Technologies into Alternatives
 - Screen Alternatives
 - Separated by Landfill Lobes, FDDA, GSA, and Non-Source Area Groundwater
- Phase 2 Detailed Analyses
 - Evaluate and Compare Retained Alternatives
 - Separated by Landfill Lobes, FDDA, GSA, and Non-Source Area Groundwater

Alternatives - Landfill Lobes

- LF-1 No Action
- LF-2a/b landfill cover system; excavate sediments; contain S.L. groundwater from discharging to brook w/vertical barrier; phased gw treatment (2a initiate w/ MNA approach; 2b- initiate w/ active treatment)
- LF-3 landfill cover system; excavate sediments; contain groundwater through active gw P&T;
- LF-4 landfill cover system; re-route brook; excavate sediments; contain groundwater from impacting brook (same as LF-2b)

Alternatives - FDDA

- FDDA-1 No action
- FDDA -2 contain soil with cover and groundwater by extraction
- FDDA-3 excavate soils with hydraulic containment of groundwater
- FDDA-4 excavate soils with phased groundwater remediation (initiating with MNA)
- FDDA-5 excavate soils with groundwater extraction

Alternatives - GSA

- GSA-1 No action
- GSA -2 excavate soils and dispose under landfill cover system

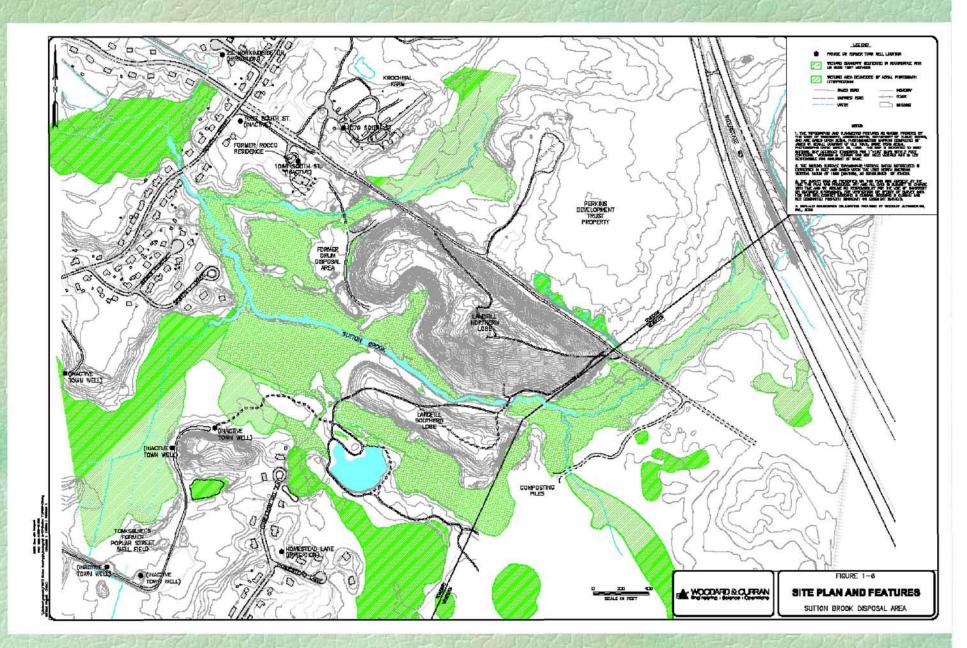
Alternatives - Downgradient Groundwater

- DGGW-1 No action
- DGGW-2 Phased approach to groundwater remediation initiating with MNA
- DGGW-3 Groundwater containment through extraction and treatment
- DGGW-4 Area-wide groundwater extraction and treatment

FS Evaluation

Various cleanup alternatives were reviewed to reduce unacceptable risks from:

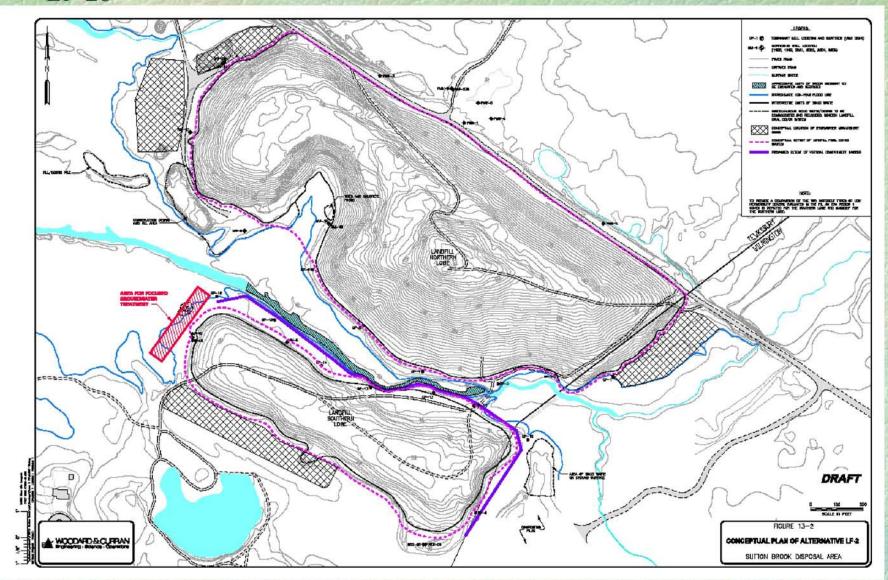
- Contaminated Groundwater
- Soil
- Indoor Air


Presumed Unacceptable Risk From

- Landfill Waste
- Sediment

Nine Criteria for Remedy Selection

Threshold Criteria:


- Overall Protection of Human Health and the Environment ("Protectiveness")
- Compliance with ARARs
- Balancing Criteria:
 - Long-term Effectiveness and Permanence
 - Reduction in Toxicity, Mobility, and Volume
 - Short-term Effectiveness
 - Implementability
 - Cost

EPA's Proposed Cleanup Plan Landfill Lobes – LF-2b

- Containment of Waste (cap)
- Vent Landfill Gas
- Excavation of Contaminated Sediment and Restoration of Wetlands and Brook
- Partial Containment of Groundwater at the Southern Lobe
- Groundwater Remediation Through Extraction and Treatment or Enhanced In-Situ Treatment at the Southern Lobe. Monitored Natural Attenuation (MNA) at the Northern Lobe.
- Monitoring and Maintenance
- Land Use Restrictions

Cost - \$ 25.2 million

6" TOP SOIL

18" VEGETATIVE SUPPORT SOIL

DRAINAGE GEOCOMPOSITE

--60-MIL GEOMEMBRANE

6" GAS VENTING

6" SUBGRADE LAYER

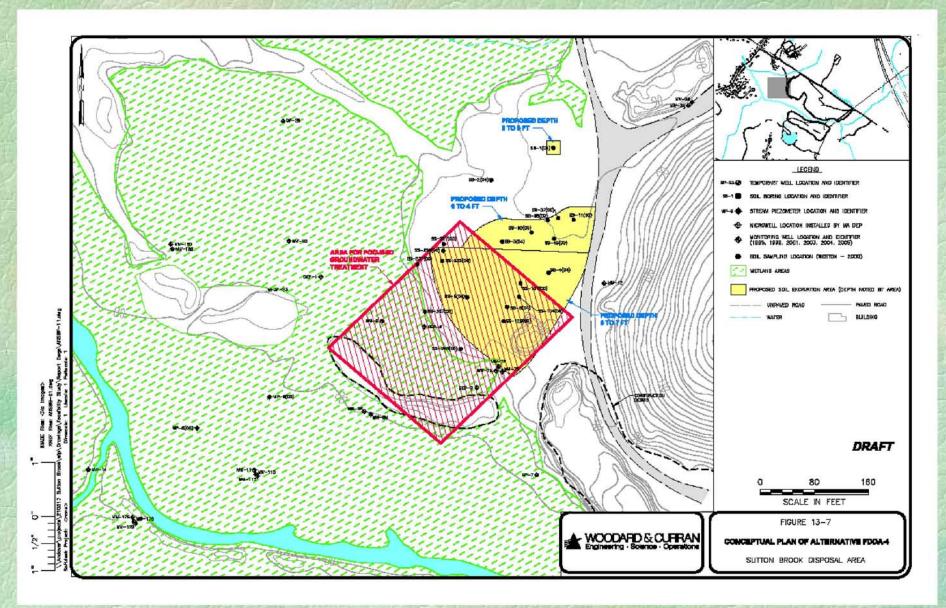
Comparison of Cleanup Alternatives for Landfill Lobes

	No Action	Cap Waster Groundwater	e & Partial Containment	Cap Waste		
Nine Criteria	#1 No Action	#2a MNA Contingent Groundwa- ter treatment	# #2b Groundwa- ter treatment at Southern Lobe	#3 Groundwater collection & treatment both Lobes	#4 Re-route brook & groundwater treatment	
Protects human health & environment	X	1	1	1	1	
Meets federal & state requirements	X	1	1	1	I I	
Provides long term protection	X	1	✓	1	1	
Reduces mobility, toxicity & volume	æ	I.	1	1	1	
Provides short- term protection	X	1	1	1	N.	
Implementable	1	/	1	1	1	
Cost (millions)	\$0	\$20.5	\$25.2	\$40.9-\$51.1	\$31.4	
State agency acceptance	To be	determine	d after the	public com	ment period	
Community acceptance	To be determined after the public comment period					
Time to reach cleanup goals	Will not	65- 210 yrs	65-210 yrs	52-164 yrs	65-210 yrs	

meet

Partially Meets Criterion

* EPA's Preferred Alternative


50

EPA's Proposed Cleanup Plan Former Drum Disposal Area – FDDA-4

- Excavation of Contaminated Soils Exceeding Cleanup Levels (Removal of Source Material)
- Consolidation of These Materials Under the Landfill Cap
- Monitored Natural Attenuation (MNA) of Groundwater.
- Contingency For Active Groundwater Treatment, If Necessary
- Monitoring

Cost - \$ 2.8 million

FDDA-4

Comparison of Cleanup Alternatives for Former Drum Disposal Area

	No Action	Cap Soil	Excavate & Consolidate Soil			
Nine Criteria	#1 No Action	#2 Contain groundwater by extraction & treatment	#3 Contain groundwater by extraction & treatment	#4 MNA with groundwater treatment contingency	#5 Area-wide groundwater extraction & treatment	
Protects human health & environment	æ	1	1	1	1	
Meets federal & state requirements	×	1	1	1	1	
Provides long term protection	X	\checkmark	1	/	1	
Reduces mobility, toxicity & volume	X	1	1	S	1	
Provides short- term protection	×	1	1	1	1	
Implementable	1	/	1	✓	1	
Cost (millions)	\$0	\$7.5 - \$8.3	\$7.6-9.2	\$2.8	\$9.9 - \$12.3	
State agency acceptance	To be	determine	d after the pu	ıblic comm	ent period	
Community acceptance	To be	determined	d after the pu	ıblic comm	ent period	
Time to reach cleanup goals	Will not meet	30 - 134 yrs	24-89 yrs	36-103 yrs	23-85 yrs	

Meets or Exceeds Criterion

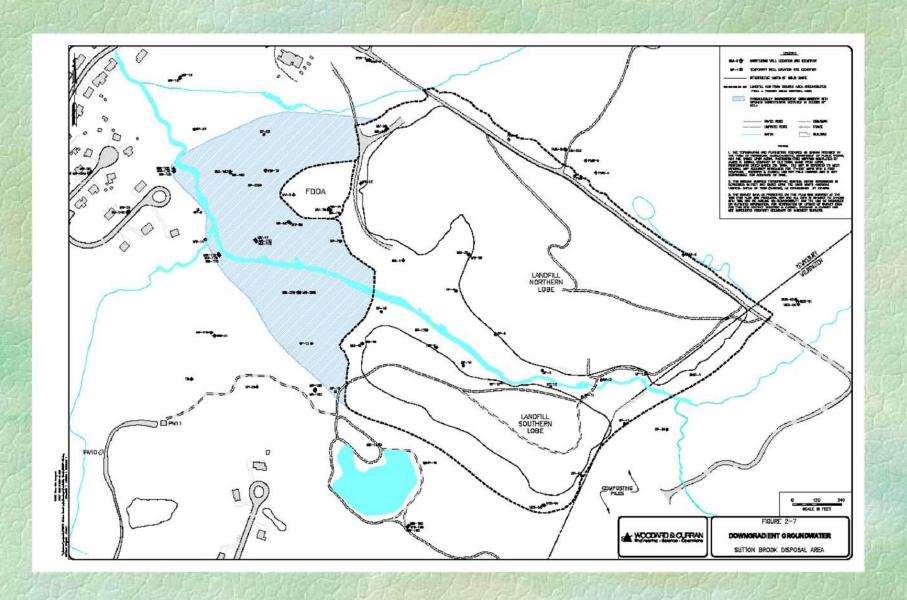
Does NOT Meet Criterion

Partially Meets Criterion

* EPA's Preferred Alternative

EPA's Proposed Cleanup Plan Garage Storage Area GSA-2

- Excavation of Contaminated Soils
- Consolidation of Soils Under Landfill Cap


Cost - \$ 207,000

EPA's Proposed Cleanup Plan Downgradient Groundwater – DGGW-2

- Monitored Natural Attenuation (MNA) to Address Groundwater Contamination
- Contingency For Active Groundwater
 Treatment, If Necessary
- Monitoring

Cost - \$1.75 million

Downgradient Groundwater

Comparison of Cleanup Alternatives for Downgradient Groundwater

	No Action	In-Situ (in place)	Groundwater Containment	Area Wide	
Nine Criteria	#1 No Action	#2 MNA Contingent Groundwa- ter treatment	#3 Groundwater extraction & treatment	#4 Groundwater extraction & treatment	
Protects human health & environment	ES	1	1	1	
Meets federal & state requirements	E	1	1	1	
Provides long term protection	ES	✓	1	1	
Reduces mobility, toxicity & volume	X	S	1	1	
Provides short- term protection	ES	✓	1	1	
Implementable	1	1	1	1	
Cost (millions)	\$0	\$1.75	\$9.8-\$12.8	\$11.1 - \$16.8	
State agency acceptance	To be determined after the public comment period				
Community acceptance	To be determined after the public comment period				

Time to reach cleanup goals	Will not meet	67-79 yrs	57-68 yrs	57-68 yrs
-----------------------------	---------------------	-----------	-----------	-----------

○ Does NOT Meet Criterion

Partially Meets Criterion

EPA's Preferred Alternative

Total Estimated Cost of EPA Preferred Alternatives

LF-2b, FDDA-4, GSA-2 and DGGW-2

• \$ 29.98 million

Public Comment Period

- Public Comment Period ends July 28, 2007
 - Submit comments in writing by fax, email, or letter.
- Public Hearing July 18, 2007
 - Verbal comments will be transcribed
- EPA will respond in writing to comments in a "Responsiveness Summary" to accompany the Record of Decision (ROD) by the end of September 2007.

How to Comment

Submit comments to:

Don McElroy
EPA - New England, Region 1
1 Congress Street, Suite 1100 HBO
Boston, MA 02114-2023

Email or Fax by midnight 7/28/07 to: mcelroy.don@epa.gov

Fax: 617-918-0448 or 617-918-1291

 Provide Verbal Comments at Public Hearing at Tewksbury Public Library, July 18, 2007 at 6pm